Emory’s Quantitative Sciences (QSS) major offers a rigorous and accessible way to combine mastery of quantitative approaches with whatever discipline or career path interests you. Interested in combining quantitative studies with neuroscience and behavioral biology? Our specialized track gives you the opportunity to study the brain and human cognition both biologically and psychologically using data-driven methods.

Career options
By pursuing a quantitative degree in neuroscience and behavioral biology, you’ll have a variety of opportunities in labs at both research institutes and major universities. Or, go to work for the technology industry—software companies are increasingly employing neuroscientists to work on projects that require understanding human behavior.
Research opportunities
Pursuing a QSS degree with neuroscience and behavioral biology prepares you for research in computational neuroscience—the study of brain function in terms of the information processing properties of the structures that make up the nervous system. Research in the field examines the functional and biologically realistic neurons (and neural systems), their physiology, and their dynamics.

Graduate study
Wondering what else you can do with this degree? You’re ready to pursue a Ph.D. in neuroscience and computational neuroscience or earn an advanced degree in fields such as mechanical engineering, bioengineering, neural engineering, or public health. If you’re interested in practicing medicine, many medical schools now have neuroscience research tracks.

Quantitative Sciences Program Requirements
As a QSS major, you must take:
• At least 7 QSS courses: 4 core and 3 upper-level electives
• A minimum of 6 additional courses in your chosen substantive track
• Additional electives (either in the QSS major or in your substantive track) may need to be taken to fulfill the QSS degree requirements.

Upper-Level Electives
Topics may include computational modeling, advanced statistics, GIS, technical writing, longitudinal analysis, maximum likelihood estimation, and experimental methods, among others.