QTM 531: COMPUTING II
Contact Hours: Two 1.25-hour or one 2.5-hour session weekly, plus 4.5 hours of regular, out-of-class work required as preparation for in-class work
Credit Hours: 3

Instructor: Xxx
Semester Spring 20xx
Meeting Time and Place: xxx
Office: xxx
Office Hours: xxx
Email/Contact: xxx
Course Website: xxx
TA: xxx

COURSE OBJECTIVES
This class is the second sequence of the two computing courses connecting to QTM 530 Computing I. Assuming that students know how to explore and manipulate data, and do the basic programming, this course will focus on gaining building blocks for programming related to data analysis and machine learning. In addition, the class will introduce practical concepts relevant for reproducible research with big data. By the end of the course, students are expected to (1) fluently reshape data into the most convenient form for analysis, (2) know how to implement methods related to data analysis, (3) know how to implement algorithms in machine learning, (4) know how to implement statistical methods and machine learning algorithms using cloud, (5) know how to make a research reproducible by understanding from the development and source control to the deployment. Students would primarily write code in Jupyter/IPython notebooks. Most of the computing exercises will be based on Python.

PREREQUISITES
- QTM 530 Computing I

REQUIRED TEXTBOOK
- [IML] Introduction to Machine Learning with Python, by Andreas C. Müller and Sarah Guido, O'Reilly
- [PD] Python for Data Analysis, by Wes McKinney, O'Reilly
- [IL] Introduction to Linux [IL], by Machtelt Garrels, (https://www.tldp.org/LDP/intro-linux/html/)
CLASS REQUIREMENTS
Grades will be based on
- homework assignments (45%)
- a midterm exam (20%)
- a final exam (30%)
- class participation (5%)

HOMEWORK
The homework assignment consists of 7 computer-based problem sets. Usually each homework would due before the class. Any assignment submitted after the due date/time will be considered 0 points. To accommodate unexpected circumstances, your lowest homework grade will be automatically dropped at the end of the semester. Working together on the homework assignments is encouraged, but you must write your own answers. It is highly recommended that you make your solo effort on all the problems before consulting others.

EXAMS
There are is a midterm exam and a final exam. No collaboration is allowed on the exams. There would be no make-up exam. However, with Emory approved excuses, the missed exam would be weighted toward the final exam.

HONOR CODE
All students enrolled at Emory are expected to abide by the Emory College Honor Code. Any type of academic misconduct is not allowed which includes 1) receiving or giving information about the content or conduct of an examination knowing that the release of such information is not allowed and 2) plagiarizing, whether intentionally or unintentionally, in any assignment. For the activities that are considered to be academically dishonest, refer to the Honor Code: http://catalog.college.emory.edu/academic/policies-regulations/honor-code.html.

DISABILITY ACCOMMODATIONS
If you are seeking classroom accommodations or academic adjustments under the Americans with Disabilities Act, you are required to register with Office of Accessibility Services (OAS), http://accessibility.emory.edu/. Once registration is finalized, students must request accommodation needs to be communicated or facilitated. Students are expected to give two weeks’ notice of the need for accommodations for any class activities including the exams. For more information, please see http://accessibility.emory.edu/students/new-to-oas/registering.html. Please make sure to contact me with the relevant letter at the beginning of the semester.

TENTATIVE COURSE SCHEDULE
Part I: Advanced Computing Techniques
Week 1: Essential computer literacy and Linux Foundations with Shell script

Essential computer literacy Reading [BB] Chapter 1 & 3
- Binary
- Characters and unicode
- High vs low level programming languages
- Compiled vs interpreted languages

Linux Foundations Reading [IL]
- Navigating file system (cd, ls, and related commands)
- Manipulating files (cp, rm, and related commands)
- Redirection operators (| and >)
• Installing software
• Archiving with tar
• Using ssh

Introduction to scripting *Reading [BB] Chapter 4*
• Executing shell scripts
• Writing shell scripts
• Shell variables (export and PATH)

Homework 1

Part II: Introduction to Python

Week 2: Python Basics
Basic Python Syntax *(Review)* *Reading [PD] Chapter 3.1 & [FPP] 2 & 7*
• The Python interpreter (interactive shell, python command, notebooks)
• Python’s data model (objects, values, and types)
• Numbers (int, bool, float)
• Iterables (str, list, tuple, dict)

Data manipulation and Visualization *(Review)* *Reading [PD] Chapter 4 & 5*
• Requests
• Pandas
• Numpy
• Bokeh

Week 3-4: Programming in Python
Introduction to Programming *Reading [PD] Chapter 3.2 & [FPP] 4 & 12*
• Programming in a Jupyter notebook
• Programming in an IDE
• Regular expressions
• List comprehensions
• Functions (built-in, user-defined)
• Modules
• PEP 8

Homework 2

Programming Principles *Reading [FPP] 5.4*
• Classes in Python
• Attributes and methods
• OOP summary (encapsulation, inheritance, and polymorphism)

Part III: Data Analysis with *scikit.statsmodels*

Week 5: Analysis Based on Linear Models
Reading [IPE] Chapter 20
Data analysis with OLS estimator
Data analysis with randomized experiment

Homework 3
Week 6: Analysis Based on Non-Linear Models
Data analysis with limited dependent variable Reading [GLM]
- Logit model
- Poisson model

Homework 4

Week 7
Review & Midterm Exam

Part IV: Machine learning algorithm with scikit-learn and TensorFlow

Week 8-9 Supervised Learning
Example 1: Decision Tree (scikit-learn) Reading [IML] Chapter 1.4 & 2.1-2.2 & 2.3.5
- Training and Test Sets
- Train Decision Tree
 - Regression
 - Classification Reading [IML] Chapter 2.4
- Model Evaluation Reading [IML] Chapter 5.1-5.2 & 5.3.2
Example 2: Neural Networks (TensorFlow) Reading [IML] Chapter 2.3.8

Homework 5

Week 10: Unsupervised Learning
Example: Understanding the data by K-means clustering (scikit-learn) Reading [IML] Chapter 3.1-3.3 & 3.5

Homework 6

Part V: Using Databases with Python

Week 11 Database System Foundations
Reading [PE] Chapter 15
Basic Query Language
- Create single table with Create, Read, Update, and Delete (CRUD)
Relational SQL
- Representing a Data Model in Tables
- Join
Many-to-many relationships

Part VI: Development and Production

Week 12-13:
Development Reading [HDS] 4.1
- Documentation and design
- Managing package version conflicts
- Virtual environments
• Conda
• Docker and containers
Source code control using Github
• Git
• Repositories
• Pull requests
• Collaborators
Deployment Reading [HDS] 6.1
• RESTful APIs
• Public cloud (Amazon Web Services, Google Cloud Platform)

Various online resources including:
https://guides.github.com/introduction/git-handbook/
https://aws.amazon.com/getting-started/
https://cloud.google.com/docs/overview

Homework 7

Part VII: Big data and Performance Optimization
Week 14: Big data and performance optimization
Reading [ACP]
Cloud computing
• Virtual machines and public cloud services for distributed computing
• Installing R and RStudio on cloud virtual machines
• Managed Jupyter Notebook services (AWS Sagemaker, GCP AI Platform)
Parallelism, multithreaded applications and concurrency
• Dask (parallelism for analytics in Python)
• Datashader (Visualization packages for large data)
Graphics processing units (GPU)
• Options for GPU computing on public cloud
• RAPIDS (GPU Accelerated libraries for data science)